Expanding the Armamentarium in the Management of Angina

Stents for all?

John J. Graham, MD MRCP(UK) Director, Cardiac Catheterisation and Coronary intervention Director, Interventional Cardiology Fellowship St. Michael's Hospital, Assistant Professor, University of Toronto

Presenter Disclosures

Relationships with financial sponsors:

- Grants/Research Support: N/A
- Speakers Bureau/Honoraria: Teleflex Medical/ Medtronic/ Biotronik
- Consulting Fees: N/A
- Patents: N/A
- Other: N/A

Aims/ Objectives

- Discuss management options in CAD
 - Whether to undertake and how to achieve
 - The Placebo effect of PCI
- New(ish) Developments
 - Drug coated balloons
 - Resorbable scaffolds
- Discuss additional medical management in angina

CASE 1:

70 yr male, hypertension, diabetes Meds: ramipril 10mg OD, metformin 500mg BID

Reproducible chest heaviness with climbing hills x 3 months; no rest pain

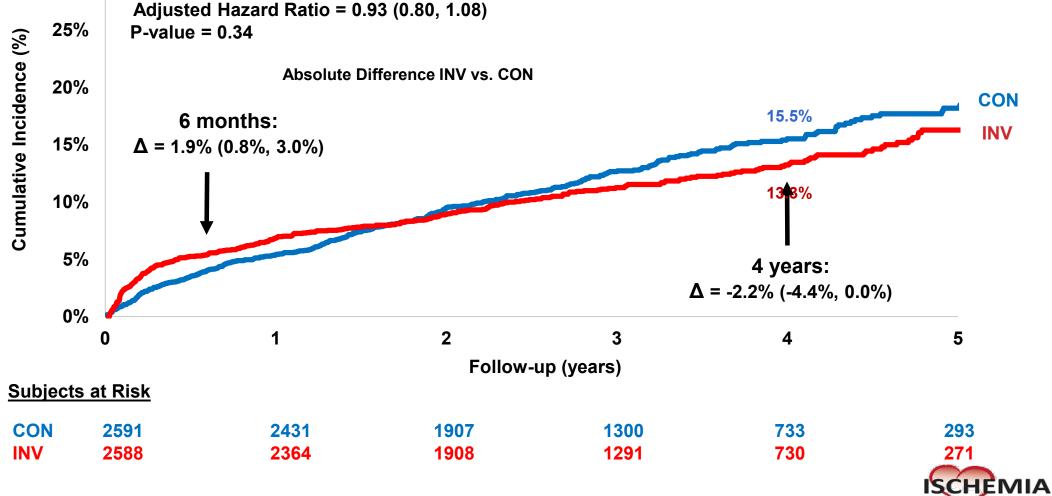
ECG NSR; Echo normal LV function, no valvular abnormality

Exercise MIBI: 9 minutes Bruce protocol, 90% APMHR, nonlimiting chest heaviness, 1mm horizontal ST depression; reversible anterolateral perfusion abnormality

Management:

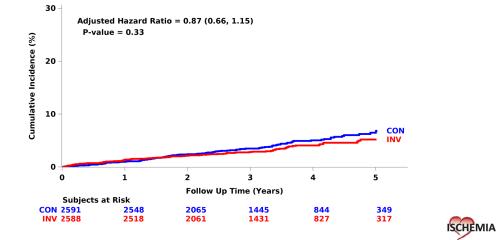
- 1. Proceed to angiography
- 2. Start ECASA, statin, beta-blocker and proceed

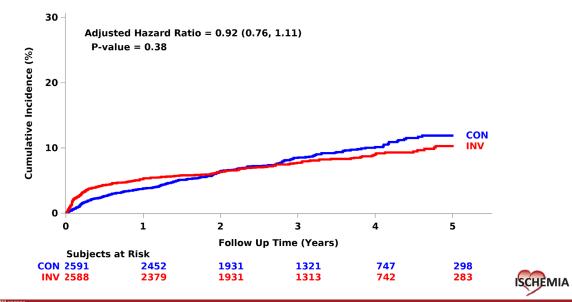
to angiography


- 3. Proceed to CCTA
- 4. Start ECASA, statin, beta-blocker and proceed

to CCTA

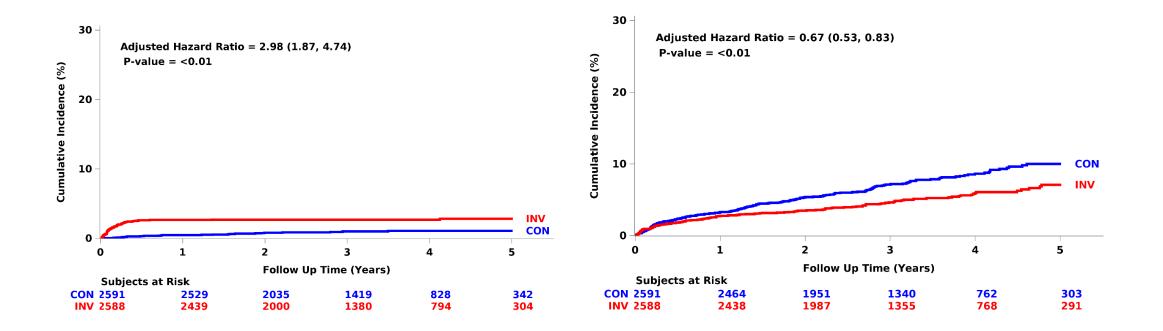
5. Start ECASA, statin, beta-blocker and reassess in 4 weeks


Primary Outcome: CV Death, MI, hospitalization for UA, HF or resuscitated cardiac arrest

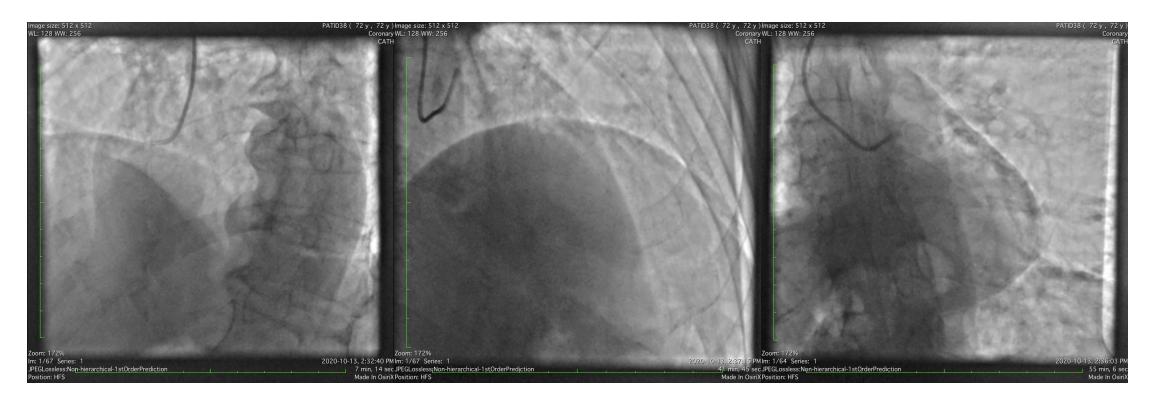

scular Clinical Research

Cardiovascular Death

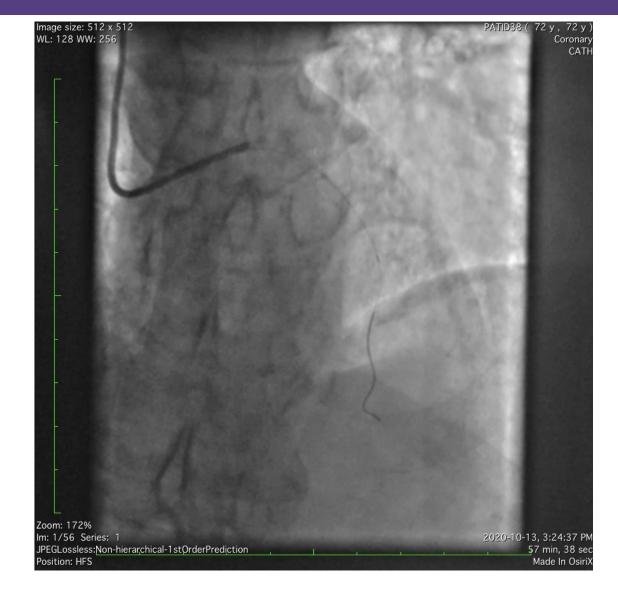
Myocardial Infarction



NYULangone Cardiovascular Clinical Research Center


Procedural MI *Type 4a or 5 MI*

Spontaneous MI *Types 1, 2, 4b, or 4c MI*

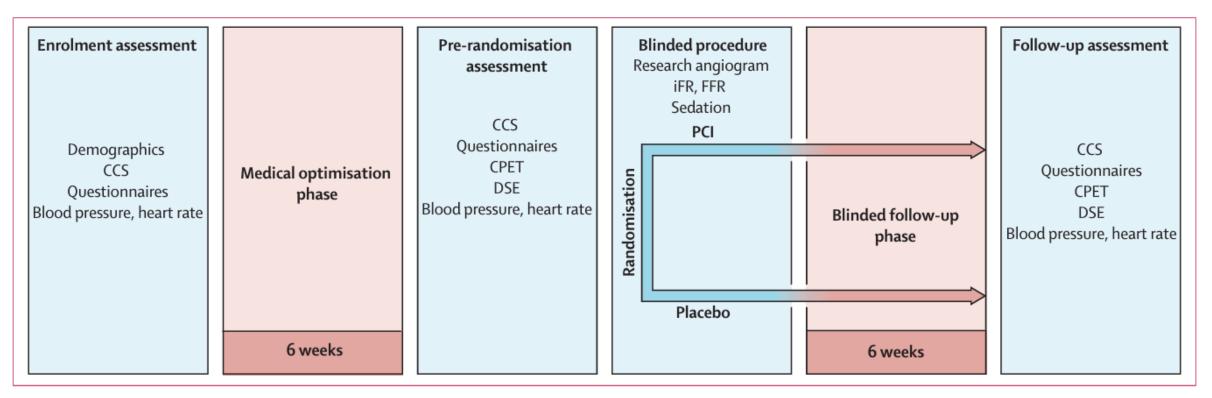


- Opted to undergo angiography
 - Single vessel disease with severe proximal LAD stenosis
 - Normal LV function

Final Result

- LAD treated with single drug eluting stent with resolution of anginal symptoms
- Treated with:
 - DAPT
 - Statin
 - ACE-I

Is There A Placebo Effect of PCI?


- Historic data showing benefit of PCI
 - Symptom relief/ improved exercise time
- Potential of placebo effect
- RCT comparing PCI versus 'Sham Control' PCI
- 200 patients with stable 'de novo' CAD

Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial

Rasha Al-Lamee, David Thompson, Hakim-Moulay Dehbi, Sayan Sen, Kare Tang, John Davies, Thomas Keeble, Michael Mielewczik, Raffi Kaprielian, Iqbal S Malik, Sukhjinder S Nijjer, Ricardo Petraco, Christopher Cook, Yousif Ahmad, James Howard, Christopher Baker, Andrew Sharp, Robert Gerber, Suneel Talwar, Ravi Assomull, Jamil Mayet, Roland Wensel, David Collier, Matthew Shun-Shin, Simon A Thom, Justin E Davies, Darrel P Francis, on behalf of the ORBITA investigators^{*}

Trial Schema

Figure 1: ORBITA study design

CCS=Canadian Cardiovascular Society angina severity grading. CPET=cardiopulmonary exercise testing. DSE=dobutamine stress echocardiography. iFR=instantaneous wave-free ratio. FFR=fractional flow reserve. PCI=percutaneous coronary intervention.

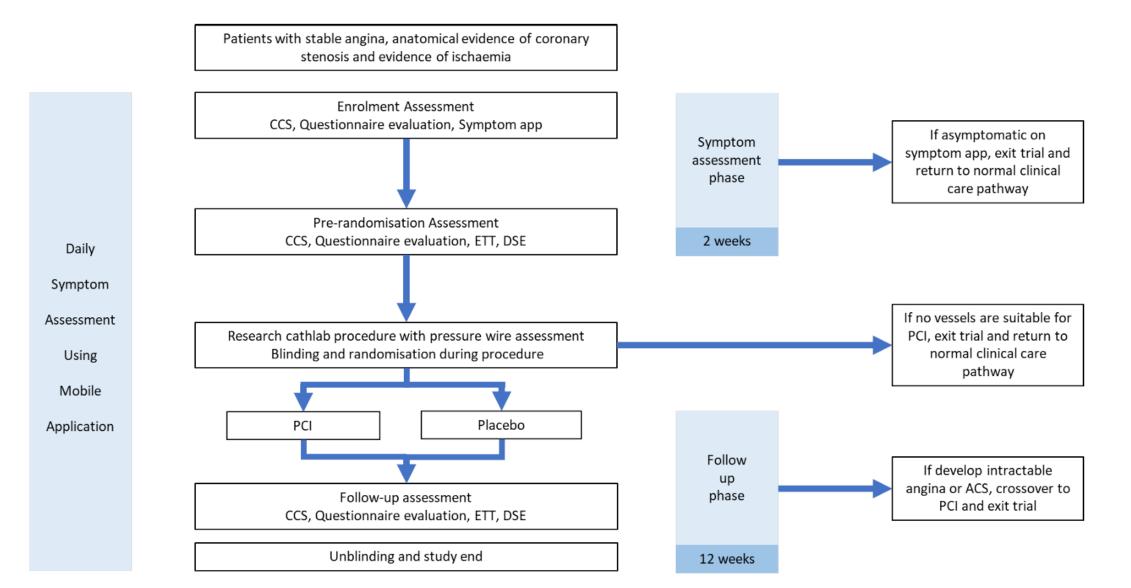
RESULTS

	PCI	Placebo		
Exercise time (s)				
Patients assessed	104	90		
Pre-randomisation	528.0 (178.7) 490.0 (195.0)			
Follow-up	556.3 (178.7)	501.8 (190.9)		
Increment (pre-randomisation to follow-up)	28·4 (95% Cl 11·6 to 45·1)	11·8 (95% Cl –7·8 to 31·3)		
Difference in increment between groups	16∙6 (95% CI –8∙9 to 42∙0)			
p value	0.200			
SAQ-physical limitation				
Patients assessed	100	88		
Pre-randomisation	71.3 (22.5)	69.1 (24.7)		
Follow-up	78.6 (24.0)	74·1 (24·7)		
Increment (pre-randomisation to follow-up)	7·4 (19·7; 95% Cl 3·5 to 11·3)	5·0 (21·2; 95% Cl 0·5 to 9·5)		
Difference in increment between groups	2·4 (95% CI −3·5 to 8·3)			
p value	0.420			

	PCI	Placebo		
SAQ-angina frequency				
Patients assessed	103	90		
Pre-randomisation	63.2 (20.4) 60.0 (25.1)			
Follow-up	74.4 (21.4)	67.7 (22.1)		
Increment (prerandomisation to follow-up)	11·2 (20·3; 95% Cl 7·2 to 15·1)	7·7 (22·7; 95% Cl 2·9 to 12·4)		
Difference in increment between groups	3·5 (95% Cl −2·6 to 9·6)			
p value	0.260			
SAQ-angina stability				
Patients assessed	102	89		
Pre-randomisation	64.7 (25.5)	68.5 (24.3)		
Follow-up	60.5 (23.7)	63·5 (25·6)		
Increment (Pre-randomisation to follow-up)	-4·2 (33·4; 95% Cl -10·7 to 2·4)	–5·1 (31·6; 95% Cl –11·7 to 1·6)		
Difference in increment between groups	0·9 (95% CI −8·4 to 10·2)			
p value	0.851			

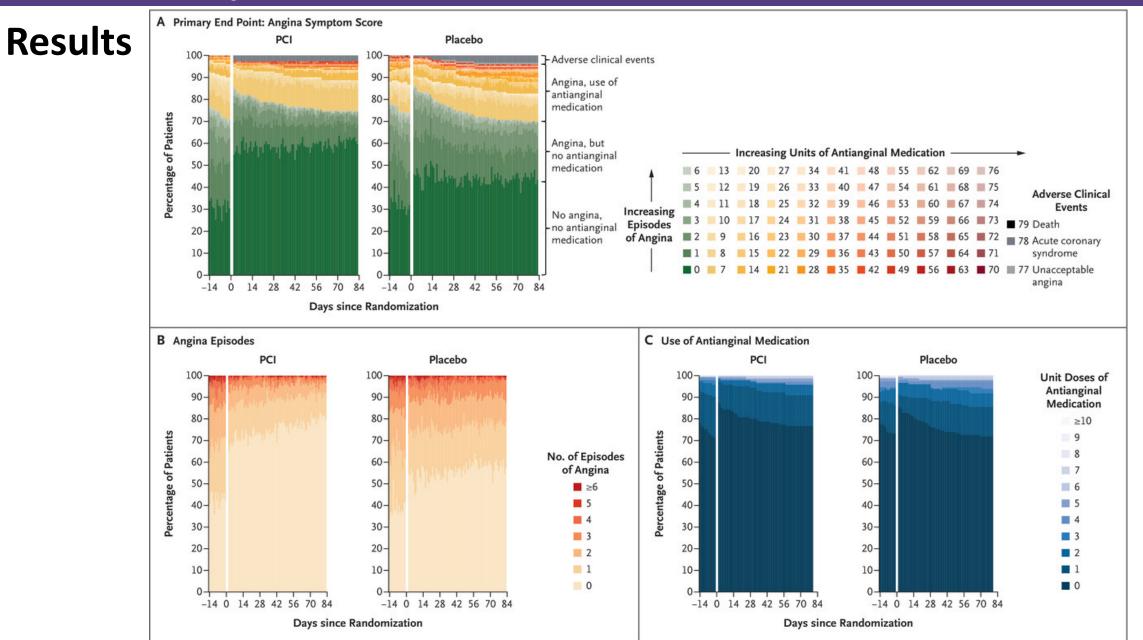
PCI as an Anti-Anginal Therapy – ORBITA-2 Trial

ORIGINAL ARTICLE


A Placebo-Controlled Trial of Percutaneous Coronary Intervention for Stable Angina

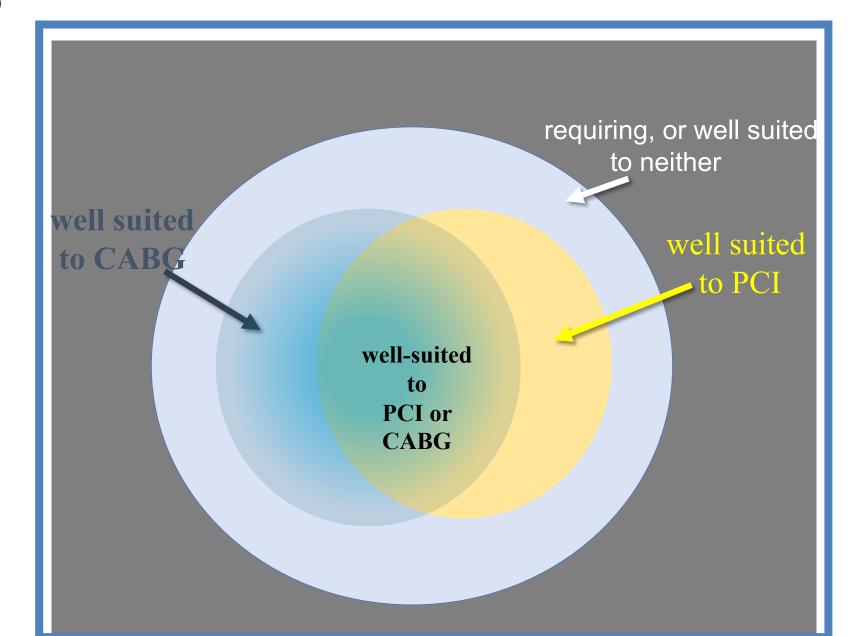
Christopher A. Rajkumar, M.B., B.S., Michael J. Foley, M.B., B.S., Fiyyaz Ahmed-Jushuf, M.B., B.S., Alexandra N. Nowbar, Ph.D., Florentina A. Simader, M.D., John R. Davies, Ph.D., Peter D. O'Kane, M.D., Peter Haworth, M.B., B.S., Helen Routledge, M.D., Tushar Kotecha, Ph.D., Reto Gamma, M.D., Gerald Clesham, Ph.D., <u>et al.</u>, for the ORBITA-2 Investigators^{*}

- Sham-controlled PCI Procedure
- On enrolment, anti-anginal medications stopped
 - DAPT, statins commenced
 - Switch of medicines allowed for alternate reasons
- Run in period of 2 weeks
 - Daily assessment of symptoms/ medication usage via smartphone app
- Patients with no symptoms excluded


ORBITA-2 Schedule

Results

Table 3. Primary and Secondary End Points.*							
End Point	PCI (N = 151)		Placebo (N = 150)		Odds Ratio or Difference (95% Cl)†		
	value	no. of patients with data	value	no. of patients with data			
Primary end point: angina symp- tom score — mean score <u>‡</u>	2.9	151	5.6	150	2.21 (1.41 to 3.47)§		
Mean daily angina episodes — no.	0.3	151	0.7	150	3.44 (2.00 to 5.91)		
Mean daily antianginal medi- cation use — units¶	0.2	151	0.3	150	1.21 (0.70 to 2.10)		
Secondary end points							
Mean treadmill exercise time — sec	700.9	123	641.4	112	59.5 (16.0 to 103.0)		
CCS class — mean	0.9	147	1.7	146	3.76 (2.43 to 5.82)		
End points assessed with the use of the SAQ∥							
Frequency of angina	80.6	146	66.2	145	14.4 (9.5 to 19.4)		
Physical limitation	82.7	139	73.9	144	8.8 (4.7 to 12.9)		
Angina stability	61.8	145	55.3	145	6.5 (0.5 to 12.5)		
Quality of life	62.8	145	51.6	145	11.2 (6.2 to 16.1)		
Freedom from angina	40	146	15	145	3.69 (2.10 to 6.46)		
EQ-5D-5L descriptive system — mean score**	0.82	145	0.73	144	0.09 (0.05 to 0.13)		
EQ-VAS — mean score**	73.1	146	66.9	143	6.2 (2.4 to 10.0)		
Stress echocardiography score — mean score††	0.79	119	1.95	111	-1.17 (-1.56 to -0.78)		



Take Home Message – ISCHEMIA/ ORBITA/ ORBITA--2

- Patient involvement crucial in all aspects of care
 - Decision to perform angio
 - Revascularisation
 - Yes or no
 - PCI vs CABG
- Revascularisation only one aspect of their care
 - Disease modifying drugs at least as important
- Perfectly reasonable to manage medically with no revascularisation

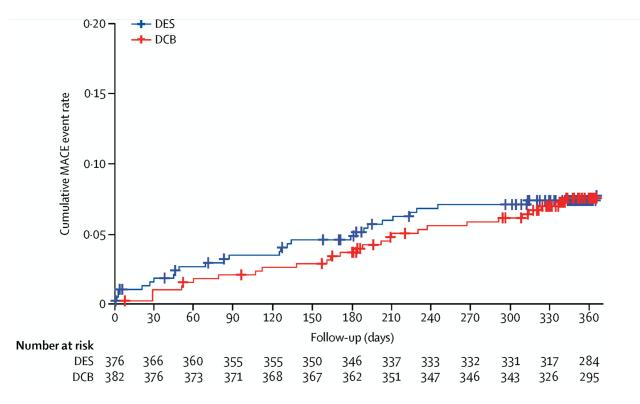
Thoughts on Multi-Vessel CAD

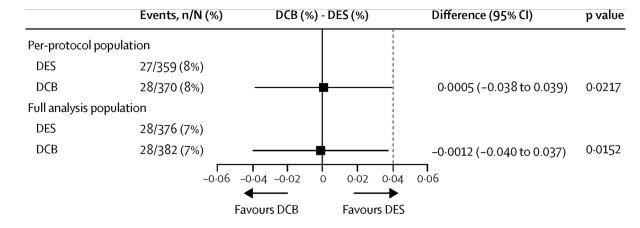
Diffuse Coronary Artery Disease

- Long been the 'heartsink' condition of the cath lab
- No 'ideal' revascularization method
 - CABG difficult to implant graft onto diffusely diseased vessel
 - PCI extensive stenting (the Full Metal Jacket)
- Revascularization itself prone to issues
 - CABG diseased implant spot requires endarterectomy
 - Higher rates early and late graft failure
 - PCI higher rates of restenosis
 - Metal stent has permanent presence

Drug Coated Balloons (DCB) for PCI

- Drug eluting stents useful but not a panacea
 - Permanent scaffold in artery
 - Require DAPT until stent endothelialised
- DCBs rely on previous lessons gained from balloon angioplasty era
- Balloon has anti-proliferative drug (typically paclitaxel) on its surface
 - Lipophilic
 - Excipient vehicle
 - Facilitate rapid drug transfer to vessel smooth muscle during single balloon inflation




Drug Coated Balloons (DCB) for PCI

- Expanding evidence for their use in various scenarios
 - Restenosis
 - Small vessel disease
 - Long LAD lesions
- Found to be non-inferior to conventional DES

DCB In Small Vessels – BASKET SMALL-2 Trial

BASKET SMALL2 – The Lancet. 2018. 392; 10150: 849-856

DCB Typical Case

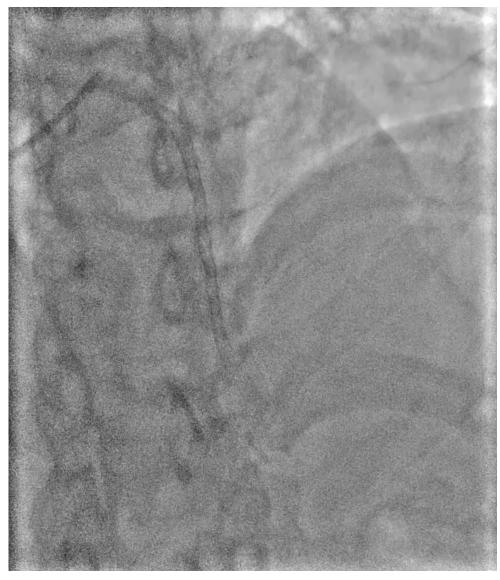
- 60 yo male
- Multiple CV risk factors
 - DM2, HTN, dyslipidemia
- Known CAD S/P PCI to proximal and distal LAD a decade previous for ACS
- Recurrent angina with abnormal Sestamibi
 - Exertional chest pain
 - Anterior/inferior ischemia


DCB Typical Case

DCB Typical Case

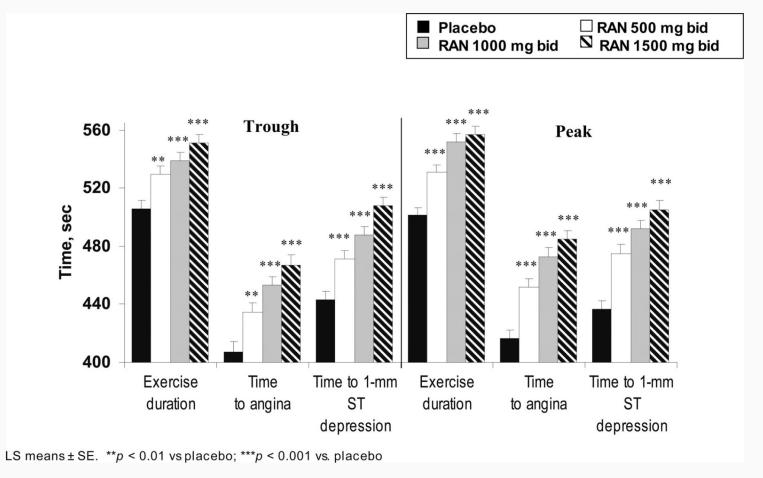
The Issue with a Full Metal Jacket

- 53 y.o. female with multiple CV RFs
 - DM2, +ve FHx, dyslipidemia
- CAD first manifest 2017 with stable angina at age 46
 - Angiography PCI to LAD and LCx
- Multiple repeat presentations due to ISR of LAD stent, in variably treated with further DES inside DES. Now has seven (7) stents in LAD
- Referred with further intractable angina


The Issue with a Full Metal Jacket

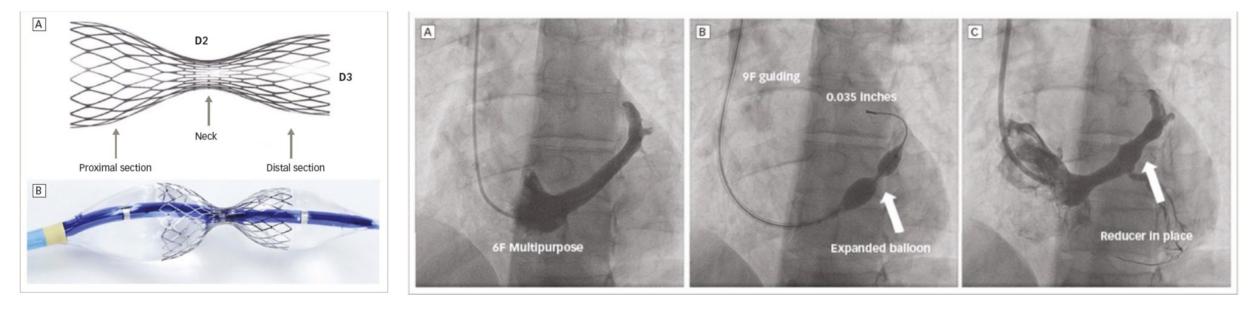
The Issue with a Full Metal Jacket

- CV Surgery felt distal LAD not big enough to graft
- Intensified medical therapy
 - Beta-blocker
 - LA nitrate
 - Ca++ channel blocker
- Dosing hampered by symptomatic hypotension



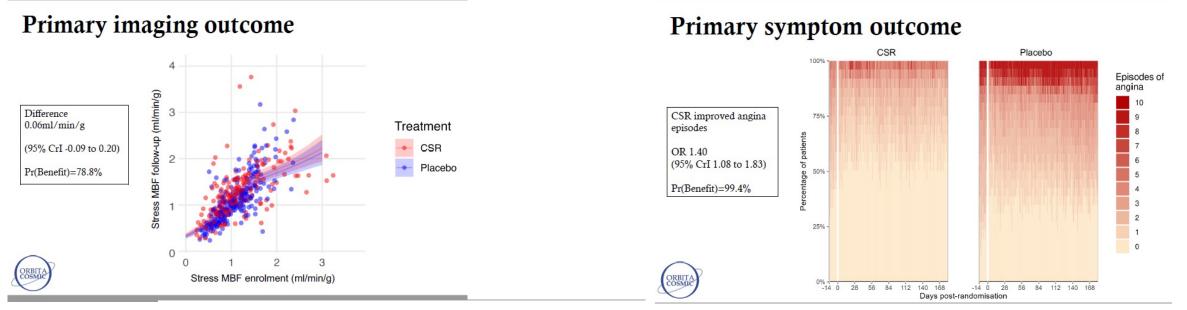
New (Old) Anti-Ischemic Medications

- Ranolazine
- Developed as anti-anginal and patented in 1986
- Unclear mechanism of action
 - ?inhibition fatty acid oxidation
 - ?improvement post-ischemic function
 - ? Reduced calcium overload in ischemic myocytes
- License purchased in early 2020's
- Health Canada approval 2021


MARISA Trial – Ranolazine vs Placebo in Stable Angina

Chaitman, BR, J Am Coll Cardiol. 2004; 43: 1375–1382.

Coronary Sinus Reducer



Proposed Mechanisms of Action

- In obstructive CAD, particularly with LV dysfunction and high filling pressures, there is a substantial coronary flow resistance and ischemia particularly of sub endocardial tissue
- Focal narrowing in CS raises pressure in venous drainage system, including dilatation of arterial capillaries and reduction of flow resistance; this leads to redistribution of blood from less ischemic to more ischemic sub-endocardium

ORBITA-COSMIC: 51 patients randomized to CSR vs. placebo

ORBITA-COSMIC conclusions

The coronary sinus reducer resulted in:

• No improvement in transmural myocardial perfusion

• Improvement in subendocardial perfusion

• Reduced angina frequency

• Improved heart disease related quality of life

Foley MJ, et al. The Lancet. 2024, April 20. 403: 10436; 1543-1553,

My Take On This

Revascularization vs. Med Rx alone

- OMT for all
- Rule out LM with anatomical test
- No reduction in CV death/MI at 3.3 years
- Reduction in spontaneous MI at cost of increase in peri-procedural MI; symptomatic benefit
- Individualize approach/discussion with patient

My Take On This

Stable Symptomatic Coronary Disease

- Percutaneous Coronary Intervention
 - **MAY** improve symptoms/exercise capacity more than anti-anginal meds

My Take On This

- Newer technology can increase options for patients (particularly previous 'untreatable' due to diffuse disease
 - Drug coated balloons show great promise in increasing areas
 - Magnesium based resorbable scaffolds are on the horizon
- If symptomatic with no revascularization option, don't forget the 'older' therapies

THANK YOU

John.Graham@unityhealth.to

