

Infections and Vaccinations: Connections and Impact on CV Disease

Jacob Udell, MD MPH FRCPC

Women's College Hospital and Toronto General Hospital Associate Professor of Medicine, University of Toronto

St. Michael's Unity Health Toronto Cardiology for the Practitioner May 4, 2024

jay.udell@utoronto.ca

Presenter Disclosure

Dr. Jacob A. Udell

Infection and vaccinations: Connections and impact on CV disease

Relationships with financial sponsors:

- Grants/Research Support: Bayer, Boehringer Ingelheim, Janssen, Sanofi
- Speakers Bureau/Honoraria: Amgen, AstraZeneca, Boehringer Ingelheim, CHRC, Eli Lilly and Company, GlaxoSmithKline, Sanofi
- Consulting Fees: Boehringer Ingelheim, Novartis, Novavax, Novo Nordisk, Sanofi
- Patents: N/A
- Other: N/A

I consider optimizing GDMT in my patients with CVD during routine outpatient clinic assessments:

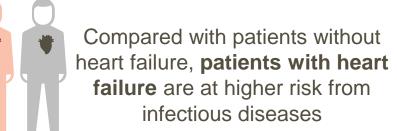
- 1. Yes
- 2. No

I include checking/recommending evidence-based viral infection vaccinations for cardiopulmonary risk reduction in my patients with CVD when optimizing GDMT:

1. Yes

- 2. No
- 3. Sometimes
- 4. I should but don't know how

The CV benefit of an annual flu shot is comparable to standard GDMT:


- 1. No
- 2. Yes
- 3. Maybe, show me the data

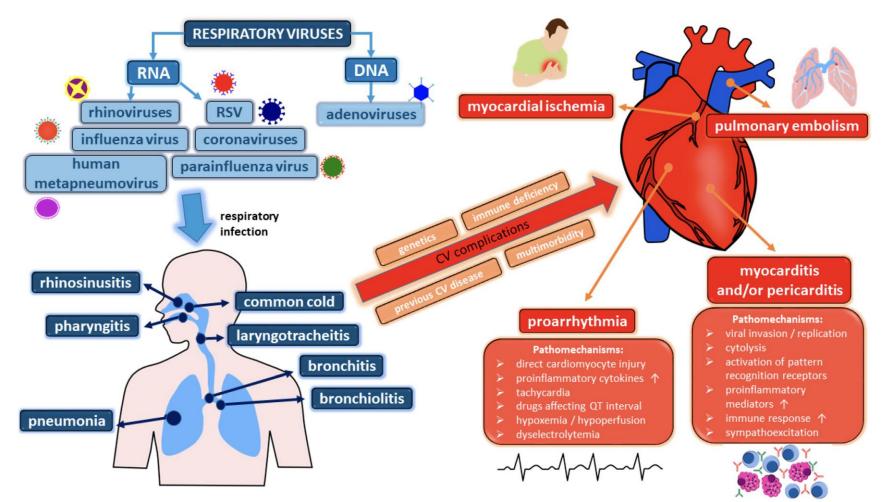
Learning Objectives

By the end of this session, participants will be able to:

- Explain interplay between immune response and pathophysiology between cardiovascular disease (CVD) and susceptibility to viral infections like influenza, herpes zoster (shingles), respiratory syncytial virus (RSV) and COVID-19
- 2. Highlight key data demonstrating the association between viral infections and downstream CV complications in patients with or at risk of CVD
- 3. Analyze the evidence for vaccination against viral infections as a strategy to reduce the risk of complications from infections and discuss practical considerations for cardiovascular specialists

Patients with or at Risk of CVD are at Higher Risk of Morbidity and Mortality from Viral and Other Respiratory Infections

Twice as likely to develop herpes zoster¹

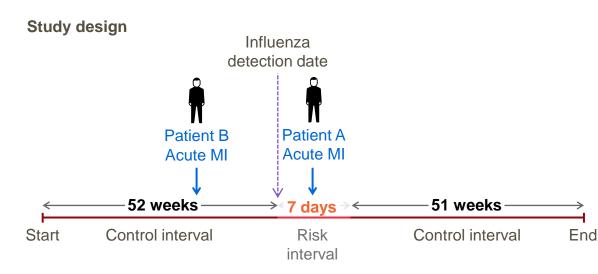

- Increased in-hospital morbidity and mortality following influenza infection²
- 4–33 times higher incidence of hospitalization with RSV³
- Poorer outcomes when hospitalized for pneumonia⁴
- Higher risk of hospitalization or death due to influenza⁵

- Compared with patients without diabetes, **patients with diabetes** are at higher risk from infectious diseases
- 5.5-18.0 times higher incidence of hospitalization with influenza infection⁶
- 2.4–6.4 times higher incidence of hospitalization with RSV in adults aged ≥50³
- 7%-33% higher incidence of post-herpetic neuralgia (PHN) in those with HZ⁷
- **2.27–4.26 higher** risk of TB infection and **36%-112% higher** rate of treatment failure and death⁸

HZ, herpes zoster; TB, tuberculosis; RSV, respiratory syncytial virus

1. Wu PH *et al. BMC Infect Dis* 2015;15:17; 2. Panhwar MS *et al. J Am Coll Cardiol HF* 2019;7:112–117; 3. Branche AR *et al. Clin Infect Dis* 2022;74:1004–1011; 4. Thomsen RW *et al. J Gen Intern Med* 2008;23:1407–1413; 5. Hak E *et al. Epidemiol Infect* 2001;126:261–268. 6. Mertz D et al. BMJ 2013;347:f5061; 7. Forbes HJ et al. Neurology 2016;87:94–102. 8. Baker MA *et al. BMC Med* 2011;9:81.

Intersection of Respiratory Virus Infections and Adverse Cardiovascular Events



Franczuk et al. 2023. Biomedicines. 11: 71

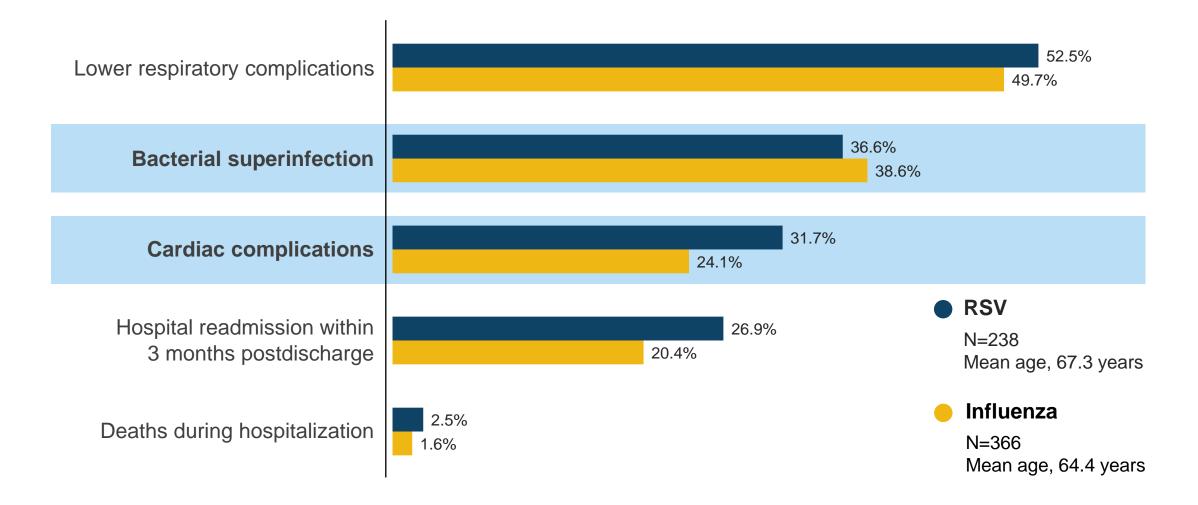
8

Lab-confirmed Influenza, RSV and Other Respiratory Infections Can Trigger an Acute MI¹

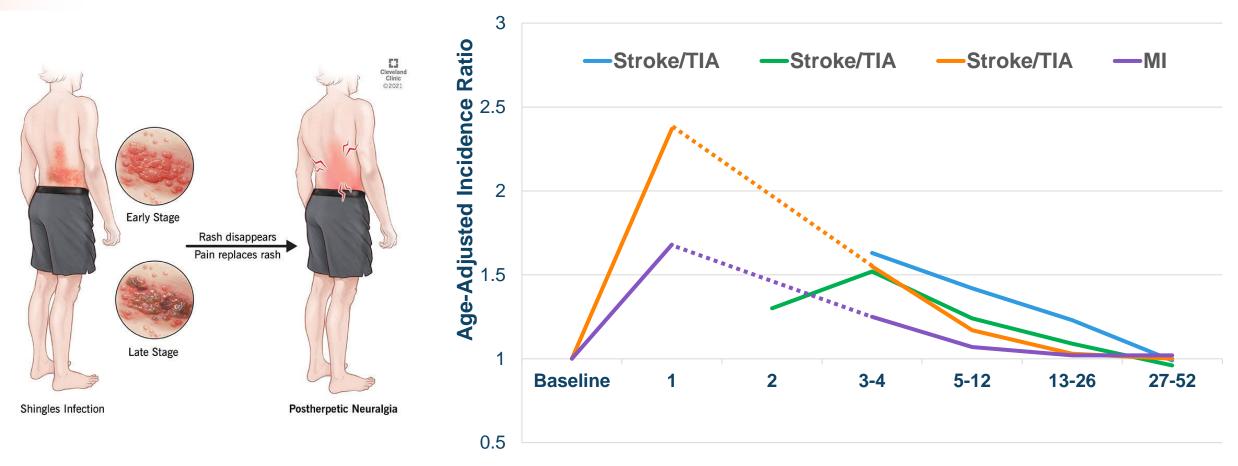
An increase in heart attacks from 3.3/week to 20/week

N=364 acute MI hospitalisations (332 patients) who had a lab-confirmed influenza diagnosis

Exposure	Risk ratio (95% CI)
Influenza	
Days 1–7	6.05 (3.86–9.50)
Days 8–14	0.60 (0.15–2.41)
Days 15–28	0.75 (0.31–1.81)
Influenza A	5.17 (3.02–8.84)
Influenza B	10.11 (4.37–23.38)
RSV	3.51 (1.11–11.12)
Other resp. viruses	2.77 (1.23–6.24)
Other resp. infection	3.30 (1.90–5.73)


CI, confidence interval; MI, myocardial infarction; RSV, respiratory syncytial virus

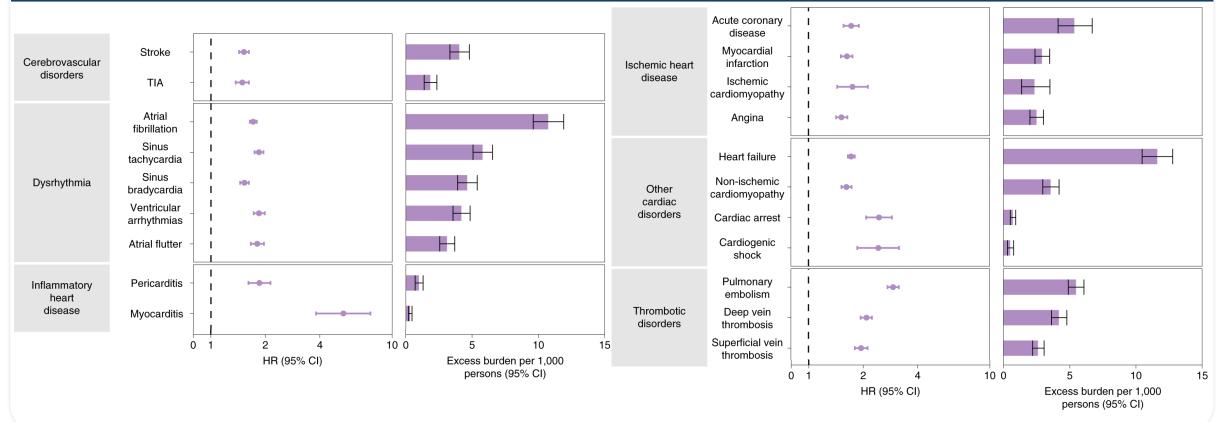
Self-controlled case series study design – patients acted as their own control in periods when they were not exposed vs when they were exposed to influenza and other respiratory viruses in Ontario, Canada.


Kwong JC et al. N Engl J Med 2018;378:345–353

9

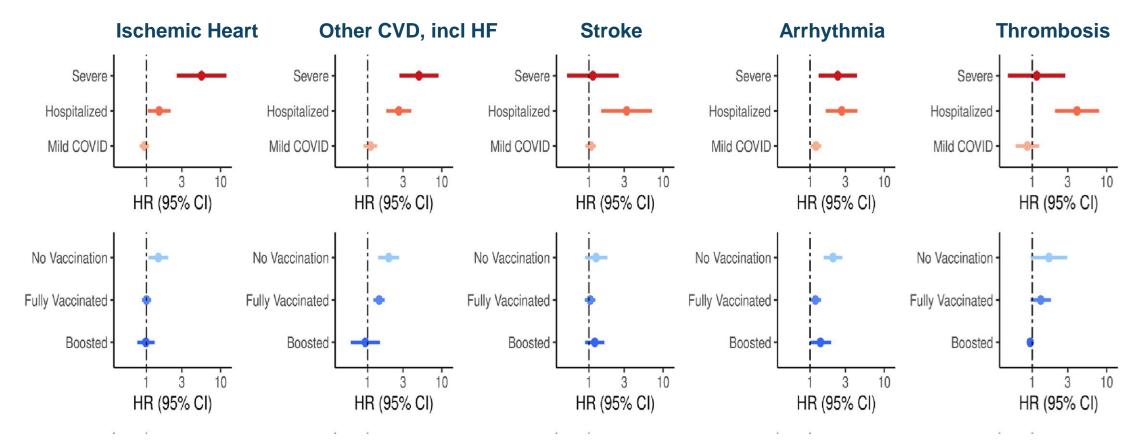
Rates of Complications w/ Respiratory Infection Hospitalizations Similar between RSV and Influenza

Herpes Zoster (Shingles) Associated with an Increased Risk of MI/Stroke


Weeks after Herpes Zoster (Shingles) Episode

Self-controlled case series study design – patients acted as their own control in periods when they were not exposed vs when they were exposed to herpes zoster (shingles) diagnosis. Wu PH et al. J Clin Med 2019;8(547):1-15. doi:10.3390/jcm8040547.

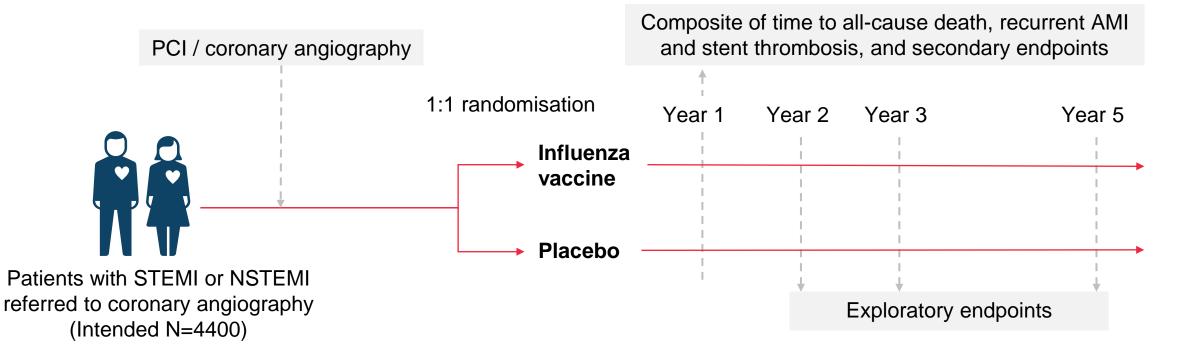
Langan SM, et al. Clin Infect Dis 2014;58:1497-1503. Schink T, et al. PLoS ONE 2016;11:e0166554. Minassian C, et al. PLoS Med 2015;12:e1001919.


COVID-19 Increases Risk of CV Events^{1,2}

A US retrospective COVID-19 case-control* database analysis estimated risks and 12-month burdens of incident post-acute COVID-19 cardiovascular outcomes¹

* Using national healthcare databases from the US Department of Veterans Affairs with presented analysis conducted using a cohort of 153,760 individuals with COVID-19, as well as 5,637,647 individuals as contemporary controls. HR = hazard ratio; CI, confidence interval; TIA, transient ischemic attack; US, United States. 1. Xie Y et al. *Nat Med* 2022; 28(1),583–590; 2. Patone M *et al. Nat Med* 2022; 28(1),410-422

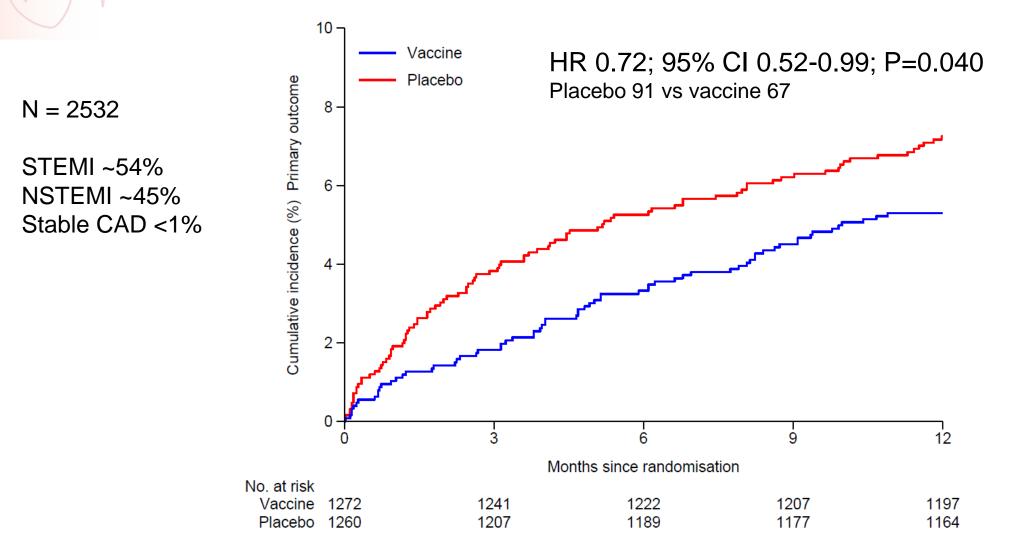
Risk of Cardiovascular, Stroke, and Thrombotic Events by Severity of COVID-19 Infection + Vaccination Status



* Using national healthcare databases from Singapore

1. Lim JT et al. Clin Infect Dis 2024;78:70-79.

IAMI Trial: Influenza Vaccine for CV Risk Reduction in Patients with Acute MI (and Stable CAD)

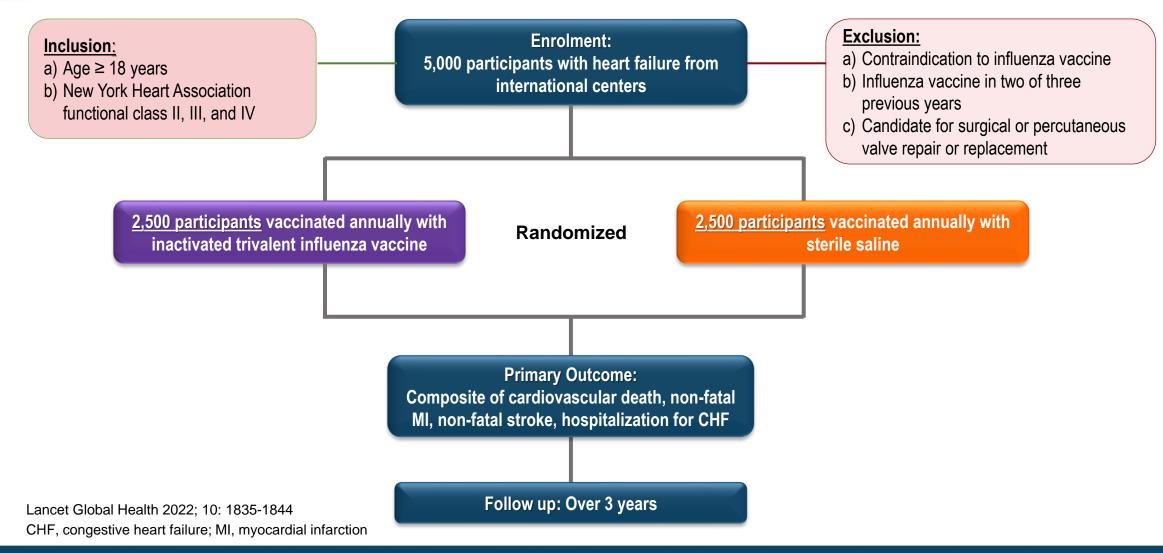

Influenza vaccination After Myocardial Infarction (IAMI) trial

NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; RCT, randomised controlled trial; STEMI, ST-elevation myocardial infarction

Fröbert O et al. Am Heart J 2017;189:94–102.

Primary Endpoint: All-cause Mortality, MI, Stent Thrombosis

Fröbert O, et al. Circulation 2021;144:1476-1484.


Meta-Analysis of Influenza Vaccine RCTs for CV Risk Reduction

	Vaccine		Placebo/	control	Risk ratio,	Favors F	Favors	Weight,
Study or subgroup	Events	Total	Events	Total	(95% CI)		placebo/control	%
Recent ACS								
Gurfinkel et al, ¹⁹ 2004	18	96	41	97	0.44 (0.28-0.71)	——		17.5
Ciszewski et al, ²⁰ 2008	3	83	7	74	0.38 (0.10-1.42)		_	3.9
Phrommintikul et al, ²¹ 2011	20	221	42	218	0.47 (0.29-0.77)	_		16.7
Frøbert et al, ⁷ 2021	67	1266	91	1258	0.73 (0.54-0.99)			25.2
Total events	108	1666	181	1647	0.55 (0.41-0.75)	\diamond		63.4
Heterogeneity: $\tau^2 = 0.03$; $\chi^2 = 4$.50, df=3 (P=.21); I ²	=33%					
Test for overall effect: z = 3.78	(P<.001)							
Stable outpatients								
Govaert et al, ²² 1994	7	927	5	911	1.38 (0.44-4.32)			5.0
Gurfinkel et al, ¹⁹ 2004	14	49	13	50	1.10 (0.58-2.09)			12.3
Ciszewski et al, ²⁰ 2008	6	242	10	259	0.64 (0.24-1.74)			6.4
De Villiers et al, ²³ 2009	20	1620	20	1622	1.00 (0.54-1.85)			13.0
Frøbert et al, ⁷ 2021	0	6	0	2	Not estimable			
Total events	47	2844	48	2844	1.00 (0.68-1.47)	\langle		36.6
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1$.14, df=3 (P=.77); I ²	=0%					
Test for overall effect: z = 0.02	(P=.98)							
Total events	155	4510	229	4491	0.68 (0.52-0.90)	\diamond		100
Heterogeneity: $\tau^2 = 0.05$; $\chi^2 = 11$.	.27, df = 7 (F	P=.13); I ² =	: 38%					
Test for overall effect: z = 2.73 (F	P=.006)							
Test for subgroup differences: χ^2	= 5.65; df =	1 (P=.02)	l ² =82.3%					_
					0.	1 1	1	10
						Risk ratio (9		

ACS, acute coronary syndrome; CI, confidence interval; RCT, randomized controlled trial Behrouzi B, Bhatt DL, Cannon CP *et al...* Udell JA. *JAMA Netw Open.* 2022;5:228873.

16

Influenza Vaccine to Prevent Adverse Vascular Events (IVVE) in Heart Failure

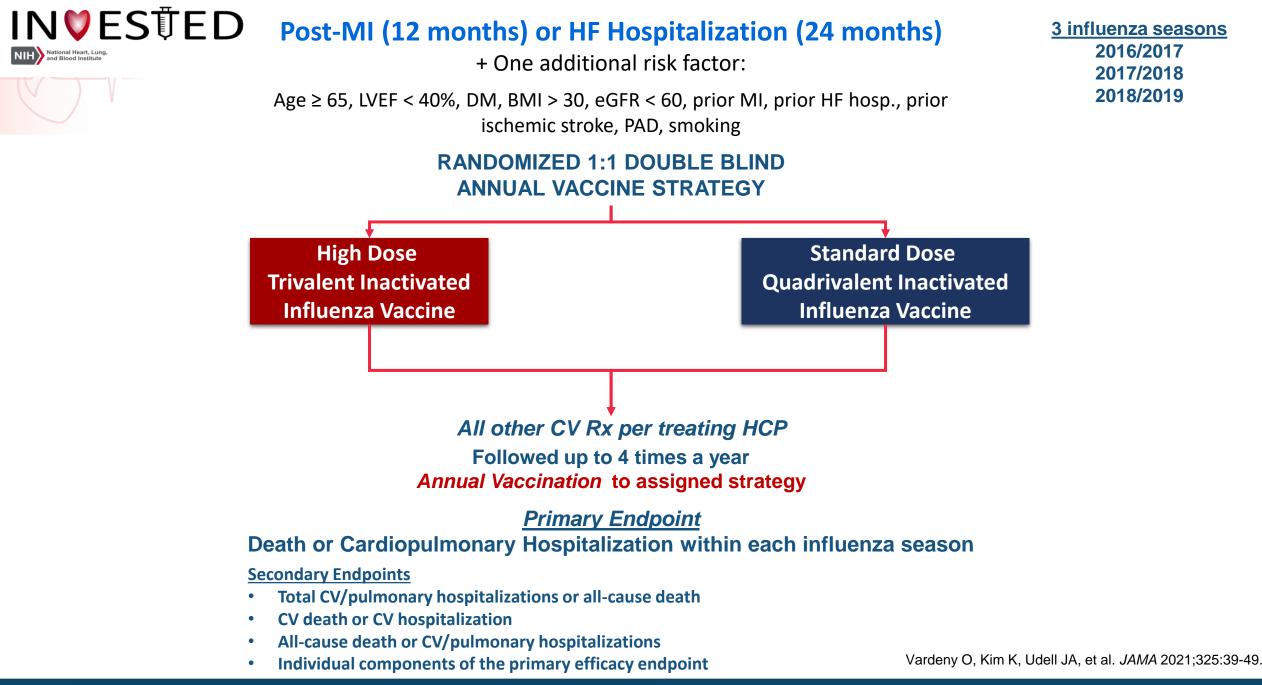
Infections and Vaccinations: Connections and Impact on CV Disease

17

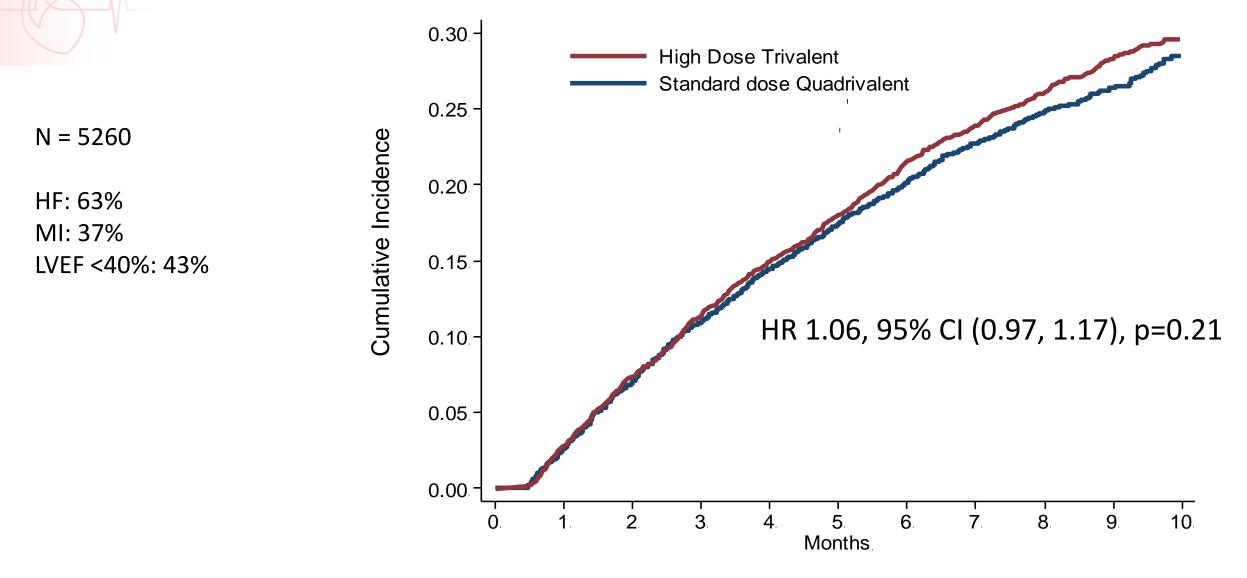
Flu Vaccine in HF: Overall Results

	Influenza vaccine (N=2560)	Placebo (N=2569)	Influenza vaccine vs. Placebo	
	No. of events (%)	No. of events (%)	HR (95% CI)	P value
First primary	380 (14.8)	410 (16.0)	0.93 (0.81-1.07)	0.30
CV death	334 (13.0)	374 (14.6)	0.89 (0.77-1.04)	0.13
All Hosp	388 (15.2)	455 (17.1)	0.84 (0.74-0.97)	0.01
HF Hosp	245 (9.6)	277 (10.8)	0.88 (0.74-1.04)	0.15
Pneumonia	61 (2.4)	104 (4.0)	0.58 (0.42-0.80)	0.0006

Lancet Global Health 2022; 10: 1835-1844.


CI, confidence interval; CV, cardiovascular; MI, myocardial infarction

Flu Vaccine in HF: Results During vs Outside Influenza Season


		Peak Influenza		Outside of Peak Season		
	Influenza vaccine Placebo		Influenza vacc. vs Placebo	Influenza vaccine	Placebo	Influenza vacc. vs Placebo
	No. of events (%)	No. of events (%)	HR (95% CI)	No. of events (%)	No. of events (%)	HR (95% CI)
Primary EP	193.7 (7.7)	227 (9.4)	0.82 (0.68-0.99)	187 (7.5)	173 (6.9)	1.08 (0.88-1.33)
All Hosp	195 (7.8)	230 (9.2)	0.84 (0.69-1.01)	193 (7.9)	225 (9.1)	0.84 (0.70-1.03)
HF Hosp	128 (5.1)	124 (4.9)	1.03 (0.80-1.32)	117 (4.7)	153 (6.1)	0.76 (0.60-0.97)
Pneumonia	28 (1.1)	54 (2.1)	0.51 (0.32-0.81)	33 (1.3)	50 (2.0)	0.65 (0.42-1.01)

Lancet Global Health 2022; 10: 1835-1844. HR, hazard ratio

Infections and Vaccinations: Connections and Impact on CV Disease

INVESTED Primary Endpoint: All-cause Mortality or Cardiopulmonary Hospitalization

Vardeny O, Kim K, Udell JA, et al. JAMA 2021;325:39-49.

Canadian Recommendations: Influenza Vaccination

Recipient by age group	Vaccine types authorized for use	Recommendations
18-59 yrs	 IIV4-SD IIV4-cc RIV4 LAIV4 	 Any available vaccines should be used if no contraindications/precautions LAIV not recommended if pregnant or with chronic health condition identified in List 1, incl. immune compromising conditions, and health care worker - Use IIV or RIV instead
60-64 yrs	IIV4-SDIIV4-ccRIV4	 Any available vaccines should be used if no contraindications
65 yrs +	 IIV3-Adj IIV4-SD IIV4-HD IIV4-cc RIV4 	 Any available vaccines should be used if no contraindications
Abbreviatior		IIV4-cc: quadrivalent mammalian cell culture-based inactivated influenza vaccine

Abbreviatio	ons:	IIV4-cc:	quadrivalent mammalian cell culture-based inactivated influenza vaccine
ART:	antiretroviral therapy	IIV4-HD:	high-dose quadrivalent inactivated influenza vaccine
HAART:	highly active antiretroviral therapy	IIV4-SD:	standard-dose quadrivalent inactivated influenza vaccine
IIV:	inactivated influenza vaccine	RIV4:	quadrivalent recombinant influenza vaccine
IIV3-Adj:	adjuvanted trivalent inactivated influenza vaccine	LAIV4:	quadrivalent live attenuated influenza vaccine.

https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-10-influenza-vaccine.html

Canadian Recommendations: RSV Vaccination

- Authorized for use in Canada in adults 60+
- Awaiting NACI recommendations
- CDC Advisory Committee on Immunization Practices (ACIP):
 - o Adults aged ≥60 years may receive a single dose of RSV vaccine, using shared clinical decision-making:
 - Consider patient's risk for severe RSV-associated disease
 - Epidemiologic evidence: persons ≥60 years who are at highest risk for severe RSV disease and might be most likely to benefit from vaccination include those with:
 - > chronic medical conditions (lung diseases, incl. COPD and asthma)
 - > cardiovascular diseases (CHF, CAD)
 - > moderate or severe immune compromise (attributable to a medical condition or receipt of immunosuppressive medications/treatment)
 - diabetes mellitus

Melger et al., 2023. MMWR 72: 793

RSV Vaccine Efficacy Against RSV-Lower Respiratory Tract Disease* with ≥1 Comorbidity, though Low Event Rates¹

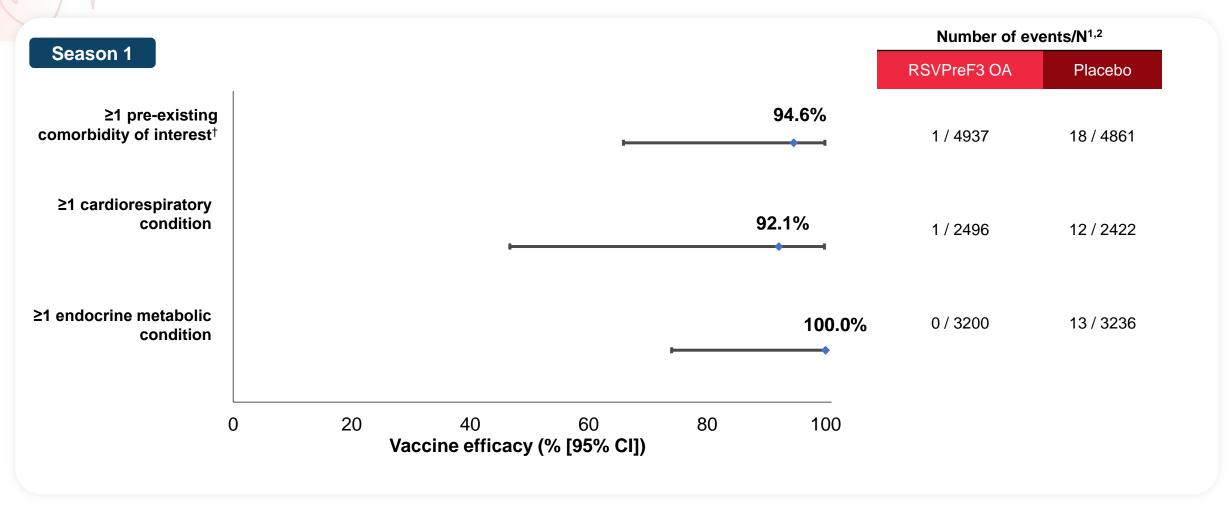
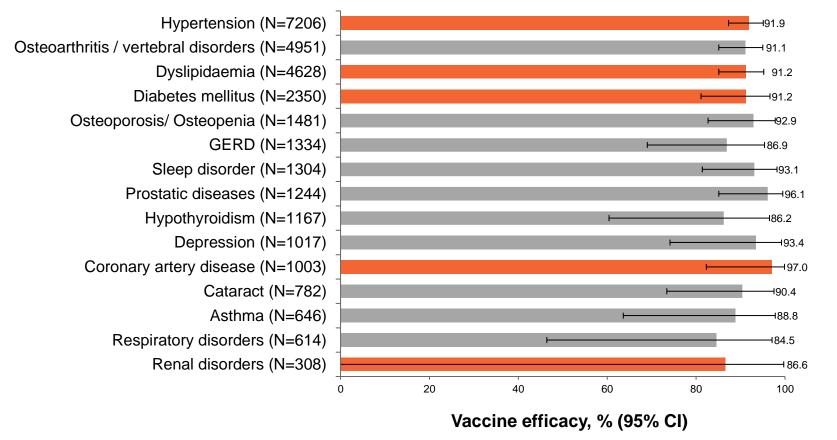


Figure adapted from GSK RSVPreF3 Vaccine for Respiratory Syncytial Virus (RSV) in Older Adults Presented at Vaccines and Related Biological Products Advisory Committee March 1, 2023. <u>https://www.fda.gov/media/165649/download</u> (accessed June 2023). *LRTD defined as ≥2 lower respiratory symptoms/signs for ≥24 hours including ≥1 lower respiratory sign, or ≥3 lower respiratory symptoms for ≥24 hours. All RSV cases confirmed by RT-PCR; †COPD, asthma, any chronic respiratory/ pulmonary disease, diabetes type 1 or type 2, chronic heart failure, advanced liver or renal disease. COPD, chronic obstructive pulmonary disease; CI, confidence interval; LRTD, lower respiratory tract disease; RT-PCR, reverse-transcriptase polymerase chain reaction 1. GSK RSVPreF3 Vaccine for Respiratory Syncytial Virus (RSV) in Older Adults Presented at Vaccines and Related Biological Products Advisory Committee March 1, 2023. https://www.fda.gov/media/165649/download (accessed June 2023); 2. Papi A *et al.* N *Engl J Med* 2023;388(7):595–608

Canadian Recommendation: Herpes Zoster Vaccination


- ☑ The recombinant zoster vaccine (RZV) is only vaccine authorized for use in Canada
- Live-attenuated zoster vaccine (LZV) first authorized in 2008 was discontinued in 2023
- RZV is recommended for individuals ≥50 years of age
 - without contraindications
 - who received LZV, or who have had a previous episode of HZ, should be vaccinated with RZV after at least one year
- RZV indicated for adults 18+ years who are or will be at increased risk of HZ due to immunodeficiency or immunosuppression caused by known disease or therapy

https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-8-herpes-zoster-(shingles)-vaccine.html

RZV Vaccination Against HZV by Comorbidity Subgroup

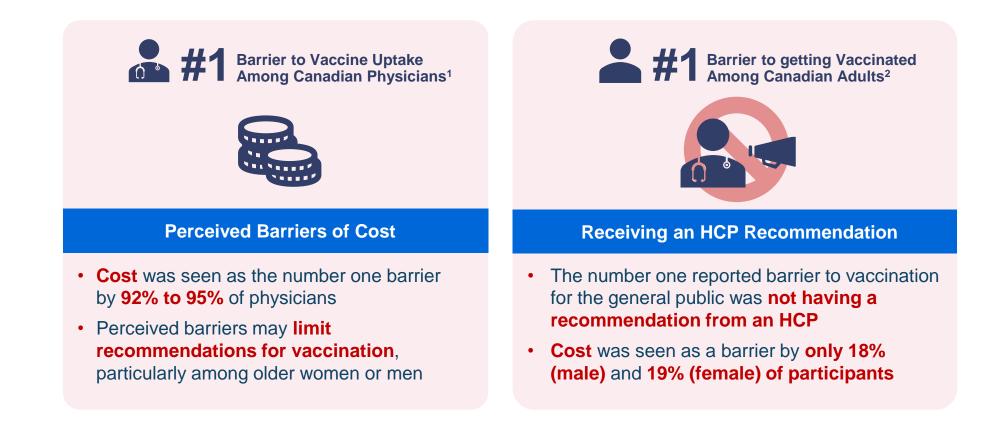
Pooled post-hoc analysis of ZOE-50 and ZOE-70 data showed RZV is efficacious in older adults with DM, consistent with its efficacy in the overall population

Vaccine efficacy against HZV for participants with medical conditions at enrolment,* over ~4 years' follow-up

The numbers of SAEs, deaths and pIMDs were similar in the vaccine and placebo groups for each of the medical conditions

No safety concerns were identified based on baseline medical condition

Post-hoc subgroup analyses of safety and efficacy by participants' pre-existing conditions were exploratory. *No standard definitions were used in the diagnosis; therefore, each selected medical condition could vary with respect to severity, stage, treatment, progression or type (eg DM type). CI, confidence interval; DM, diabetes mellitus; GERD, gastro-oesophageal reflux disease; HZ, herpes zoster; pIMD, potential immune-mediated disease; RZV, recombinant zoster vaccine; SAE, serious adverse event. Oostvogels L *et al. Hum Vaccin Immunother* 2019;15:2865–2872. Lal H *et al. NEJM* 2015;372:2087–2096; 2. Cunningham AL *et al. NEJM* 2016;75:1019–1032.


However, Only 1 in 5 Canadian Adults are Aware of Which Vaccinations They Should Receive

And approximately half have not been informed of which vaccines they need by physician/nurse

Study of 4,023 adults who completed a survey, 62 participated in focus groups; 1,167 healthcare providers (doctors, nurses, pharmacists) completed survey, 45 participated in focus groups. MacDougall DM, et al. BMJ Open 2015; 5:e009062.

Perceived Barriers to Immunization Differ Between Patients and Physicians

• It is important to counsel patients on all available vaccines, without making any presumptions as to what they can or cannot afford

1. Steben et al. J Obstet Gynaecol Can. 2019;41:599-607; 2. Steben et al. J Obstet Gynaecol Can. 2019;41:1125-33.

Practice Points for Optimizing Immunization Rates in CV Patients

DISCUSS Make it routine

Build a habit of talking about vaccination

Prioritize prevention Ensure immunization discussions aren't lost amid other concerns

Take responsibility for the discussion Don't assume another HCP will take the lead

2

Make the recommendation

Recommendations to vaccinate are a major factor in ensuring patient and primary care provider reassurance

Help your patient understand why

Ensure your patients understand their risk factors for potential complications of viral diseases and the importance of prevention

Take a presumptive approach

Telling rather than asking about vaccinations is seen as a stronger recommendation

ADMINISTER Make it easy

Engage your allied health team to discuss, recommend, and administer vaccinations

Ensure patients know where they can go to receive their vaccines

Patient materials

Take advantage of or develop vaccination information to aid in counselling your patients

Add vaccination prompts to EMR and include vaccination recommendations in discharge plans

Cumulative Impact of Evidence Based Acute MI Therapies on Cardiovascular Mortality

	Relative Risk	1y CV Mortality
None		13.2%
Aspirin/Lytic	↓ 42%	8.0%
Primary PCI	↓ 27%	5.8%
ACE inhibitor	↓ 16%	4.9%
Beta blocker	↓ 26%	3.6%
High Intensity Statin	↓ 24%	2.7%
P2Y12 Inhibitor (ticagrelor vs clopidogrel)	↓ 21%	2.2%
Influenza vaccine	↓ 41%	1.3%

Cumulative risk reduction in CV mortality if all evidence-based medical therapies are used: Relative risk reduction: 90.3%. Absolute risk reduction: 11.9%, NNT = 9

Infections and Vaccinations: Connections and Impact on CV Disease

Jacob Udell, MD MPH FRCPC

Women's College Hospital and Toronto General Hospital Associate Professor of Medicine, University of Toronto

St. Michael's Unity Health Toronto Cardiology for the Practitioner May 4, 2024

jay.udell@utoronto.ca

COVID-19 Vaccine Booster Recommendations

- For those previously vaccinated against COVID-19, NACI recommends a dose of the XBB.1.5containing formulation of COVID-19 vaccine...if at least 6 months from previous COVID-19 vaccine dose or known SARS-CoV-2 infection (whichever is later).
- Immunization is particularly important for those at increased risk of COVID-19 infection or severe disease, e.g.:
 - Adults 65 years +
 - $_{\odot}$ Residents of long-term care homes/other congregate living settings
 - Underlying medical conditions that place people at higher risk of severe COVID-19
 - o Pregnant women
 - $\circ\,$ First Nations, Métis and Inuit communities
 - $_{\odot}\,$ Members of racialized and other equity-deserving communities
 - $\circ\,$ People who provide essential community services
 - (Strong NACI Recommendation)

https://www.canada.ca/en/public-health/services/publications/vaccines-immunization/national-advisory-committee-immunization-addendum-guidance-use-covid-19-vaccines-fall-2023.html

COVID-19 Vaccine Recommendations (primary series): Myocarditis/pericarditis (mRNA Vaccines)

- "...primary series surveillance data in Canada, US and European Nordic countries suggest a higher rate of myocarditis/pericarditis cases reported after vaccination with Moderna Spikevax original (100 mcg) compared to Pfizer-BioNTech Comirnaty original (30 mcg) vaccine, especially among 12- to 29-year-old males following a 2nd dose of vaccine."
 - Evidence from bivalent and original mRNA COVID-19 vaccines across different age groups shows:
 - the risk of myocarditis is lower following boosters compared to dose 2 of the primary series
 - no product-specific identifiable difference in the risk of myocarditis following a booster dose
 - these observations were also seen in adolescents 12-17 years of age, however the use of Moderna Spikevax COVID-19 vaccines have been limited in those 5-17 years

As a result of this safety signal, Pfizer-BioNTech Comirnaty was preferentially recommended as a primary series for those between 12-29 years of age

https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-26-covid-19-vaccine.html#a5.2